FACTORIZACIÓN POR AGRUPAMIENTO PROBLEMAS RESUELTOS
El proceso para factorizar por "Agrupación de Términos" consiste en agrupar convenientemente los términos de un polinomio, a fin de obtener, en cada grupo formado, un factor que sea común a todos los términos, luego se procede como en el caso anterior.
EJERCICIO 1 :
Factorizar: ac+ad+bc+bd
RESOLUCIÓN :
Agrupando de dos en dos términos el polinomio dado, obtendremos dos polinomios parciales : ac+ad+bc+bd=(c+d)(a+b)
EJERCICIO 2 :
Factorizar:
mx – m – x + 1
RESOLUCIÓN :
Agrupando el primero con el segundo, el tercero con el cuarto, obtenemos:
mx – m – x + 1 = (x – 1)(m – 1)
EJERCICIO 3 :
Factorizar:
2x²+2xc – 3bx – 3bc
RESOLUCIÓN :
Agrupando el primero con el segundo, tercero con el cuarto obtenemos:
2x²+2xc – 3bx – 3bc = (x+c)(2x – 3b)
EJERCICIO 4 :
Factorizar:
3y² – 2ax+3x-2ay²+4a – 6
RESOLUCIÓN :
Agrupamos los términos del polinomio de la siguiente manera:
3y² – 2ax+3x – 2ay²+4a – 6= (3 – 2a)(y²+x – 2)